|
In computer science, specifically software engineering and hardware engineering, formal methods are a particular kind of mathematically based techniques for the specification, development and verification of software and hardware systems. The use of formal methods for software and hardware design is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analysis can contribute to the reliability and robustness of a design. Formal methods are best described as the application of a fairly broad variety of theoretical computer science fundamentals, in particular logic calculi, formal languages, automata theory, and program semantics, but also type systems and algebraic data types to problems in software and hardware specification and verification.〔Monin, pp.3-4〕 ==Taxonomy== Formal methods can be used at a number of levels: Level 0: Formal specification may be undertaken and then a program developed from this informally. This has been dubbed ''formal methods lite''. This may be the most cost-effective option in many cases. Level 1: Formal development and formal verification may be used to produce a program in a more formal manner. For example, proofs of properties or refinement from the specification to a program may be undertaken. This may be most appropriate in high-integrity systems involving safety or security. Level 2: Theorem provers may be used to undertake fully formal machine-checked proofs. This can be very expensive and is only practically worthwhile if the cost of mistakes is extremely high (e.g., in critical parts of microprocessor design). Further information on this is expanded below. As with programming language semantics, styles of formal methods may be roughly classified as follows: * Denotational semantics, in which the meaning of a system is expressed in the mathematical theory of domains. Proponents of such methods rely on the well-understood nature of domains to give meaning to the system; critics point out that not every system may be intuitively or naturally viewed as a function. * Operational semantics, in which the meaning of a system is expressed as a sequence of actions of a (presumably) simpler computational model. Proponents of such methods point to the simplicity of their models as a means to expressive clarity; critics counter that the problem of semantics has just been delayed (who defines the semantics of the simpler model?). * Axiomatic semantics, in which the meaning of the system is expressed in terms of preconditions and postconditions which are true before and after the system performs a task, respectively. Proponents note the connection to classical logic; critics note that such semantics never really describe what a system ''does'' (merely what is true before and afterwards). 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Formal methods」の詳細全文を読む スポンサード リンク
|